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THE LORENTS CONDITION AS A SECONDARY GAUGE
CONDITION AND ITS APPLICATION
FOR THE FIELD QUANTIZATION

N.B.Skachkov, O.Yu.Shevchenko*

The quantization of a free electromagnetic field is performed by
using a secondary gauge condition. It is proved that in contrast with
the standard approach the generating functional of the Green function
must contain two J-functions with the gauge conditions under the
sign of the functional integration in configurational space.

The investigation has been performed at the Laboratory of Theo-
retical Physics, JINR.

YcnoBne JlopeHna kak BTOpHUHOE KalnGpOBOUHOE yCJIOBHE
H €ro HCTIONb30BaHHe [IpY KBAaHTOBAaHHH ToJIell

H.B .Ckauxos, 0.10.lllepuenxo*

Ocymecmneno KBaHTOBaHHe CBOOOOHOIO HIEKTPOMAarHuTHOr O oA
C YYeTOM BTOPHYHOrO KaJIHGPOBO‘!HOl' 0 YCIIOBHA. HOKGB&HO, 4TO, B OT-

JIAIHE OT CTAH[APTHOTO MONXOAA, IIPOM3BOAALIMI GyHKIHOHA DYHK-
umi I'prHa JOMKEH COmepXaTb MOf 3HAKOM (YHKIMOHANBHOTO MHTer-
paa B KOHQHIYpaliOHHOM NPOCTPAaHCTBE ABe & -DYHKIMHA C KamuGpo-
BOUHBIMH YCJIOBHAMH. JTO NPHBOJHT K CYIIECTBEHHOH MoaupUKaIuu
CTaHZAPTHOH OH¥ar pAMMHOM TEXHHKH.

PaGora Beinontena B Jla6opaTopuu TeopeTHuecKoik ¢du3nxn OUAU.

In our previous work /1’ a general theorem was proved that claims
that Yang-Mills field A u» after imposing on it an arbitrary gauge condi-
tion ®(A)=0, does satisfy one more complementary condition. This
condition in QED has the form **

A, (x) = 0. 1)

*
Saratoy State University.

. Condition (1) holds for a free electromagnetic field that is just quanti-
zed in the framework of the perturbation theory. At the presence of the interac-
tion the spinor current enters into the right-hand side of the secondary gauge condi-
tion (1) (see 1). In a non-Abelian case (1) is substituted by the condition ;3# A#=O’
were 511 Is the Mandelstam derivative.
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Due to the fact that the relation (1) has been derived allowing for
the primary gauge condition ®(A)=0 together with the equation
of motion it has the sense of the secondary constraint and therefore
is named by us as the secondary gauge condition. (Let us remind that
the secondary constraints by definition /%’ are obtained from the pri-
mary ones taking account of the equations of motion).

The proof of this general theorem, in !/ is based on the existen-
ce of the conditions of field decreasing at infinity that have the from

1 >
A#(x) ~ _ XE\/xg-xz; 0<e €1, (2)
1+e¢
x| o0 lx|

and that are necessary for combining the requirement of the finite
of action with the possibility of using the integration by parts, that
is in turn necessary for constructing the perturbation theory.

In 'Y we have performed a modification of the known methods
of the vector field quantization: the Dirac — Bergmann method and
the method of the operator quantization by including the secondary
gauge condition (1) into the system of constraints. But the most rigo-
rous quantization method is that of the quantization by a functional
integral starting directly from the phase space. In the present paper
we shall perform such a quantization taking account of the secondary
gauge condition (1). While doing this the difference between our appro-
ach and Faddeev — Popov method would become clear. It consists,
as it will be shown below, in consistency of our quantization proce-
dure by functional method with the physicas condition on the gauge
field asymptotics.

Let us perform the quantization procedure for the free electro-
magnetic field with the Lagrangian density

f(x) = —%FW(X) F, (x) (F

w

= 8u A, - aVAu).
The corresponding density of the canonical Hamiltonian has the form

H@ = 1P @R @ - Lol mn o - A @@ (g

where 7# (x) = aﬁ(x)/a;\# (x) is the canonical momentum. In accor-
dance with the general quantization procedure for the constrained sys-
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tems /3-5/ we have the following espression for the matrix element
of the S-matrix in the extended phase space I'*:

<out|S|in > . f E DA, Dt 5(p (A, n)8(py(A, 7)) x
x8(x (A m))8(x, (A, m)) . det]| g, X o1 4)

X exp[”# AF - Ho(A! 77)])

where ¢;= n, is the primary constraint, $o= 97, is the secondary
constraint and X, Xp are additional gauge conditions that satisfy the
relations {x, ,x,1=0,det || ¢, x Il #0.

Let us consider for example the case when the field A, obeys
the temporal gauge condition y;= A, (as the primary gauge condi-
tion). Then, due to the general theorem’! the field A, has to obey,
on the equations of motion, at the same time the secondary gauge
condition (1) that in this particular case, due to the conservation of
the condition X, = A, in time, takes the form of the Coulomb condi-
tion x,= d#A, =91 A,. Thus, the system of the second class constra-
ints has the form **

¢1 =7 _=~ (0 — primary constraint; y = A0 =0 — primary gauge (5)
° 1 condition;
¢2=airri==0—secondary xz_-.aiAizo—secondary (6)
constraint; gauge condition,

that formally does not differ from an analogous system of constraints
used in the framework of the standard approach i 4.5/ for the case
of the so-called radiational gauge”(A,= 0, divA = 0). But there
exists an essential difference between our and the standard approa-
ches. Firstly, in the standard spproach one has to use the residual gauge
arbitrarirless to complete the primary condition A o= 0 by the condi-

tion div A= 0. As it has been shown by us in v , the residual gauge arbi-
trariness in the gauge A0= 0 is not compatible with the physical boun-

* As usually the sing ” ~ " means the definition up to the normalization fac-
tor that in the general case may appear to be an infinite constant.
o The sing ”~ * means the equivalence to zero in a weak sense, ie. after

opening the Poisson brackets ' %/,
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dary conditions (2). There it has been also shown that the condition
at A;r =0 is the sequence of the imposing of uniqually achieved gauge
condition/ 1_/ A =0, on the field A, and the Maxwell equations only
(AT <A, + 9, AT(A, x)),where AT(A,x) = fda. Aj(%,+a, 2) s the
projector on the gauge ‘Ag = 0. The residual gauge arbitrariness is com-
pletely absent in this case.

The next important fact follows from this circumstance: the condi-
tion xp= 61Ai= 0 is the only possible condition that completes the
system ¢ = mq =~ 0, dp=09"m;=0, xy= A;= 0 up to the system of the
second class constraints.

Taking into account (6) and combining the constant det || ¢, (t, %),
¢tV 0= det]l 5, vis(x - y)I| with the normalization
factor, we sfmll obtain instead of (4) the relation

<out|8|in> ~ [DA*Dnm . 8(m ) 8(3 m )8(A ) x

i e (7)
x 8(d'A)-expifs'A;, - H (A, n)],

Formula (7) itself does not lead to physical consequences. In order to
develop the diagram technique, one has to pass to the configurational
space performing the integration over the canonical momenta 7. Just at
this principal step there appears the main difference between our app-
roach and the standard method /8/

Let us remind that in the standard approach the integrals over 7, and
A, are easily taken with the help of 5(#,) and 8(A,) functions and then
the measure IIDA, is reconstructed up to the complete integration measure
EDAﬂwith the help of the integral representation of 8(d'7.): 8(d 'n,) =

= DV e:;p[i[d4xV(x)ai n;] . Thus as a result of the Gauss integration
over 7, one obtains in the standard approach the following formula:

<out|S|in> ~ [ Il DA, 5(0' A el rd"'x(——i—F‘”V @F, @, &

where A is chosen to be A = V.

We consider this prescription to be logically inconsistent because it
is based on the substitution of the truly dynamical variable A, (that is
canonically conjugated to the momentum 7, and satisfies the physical
boundary condition (1)) by the completely arbitrary function V. It leads
to the necessity of the correct account of the Gauss law while integration
over the canonical momenta. For this purpose we shall use the well-known
integral representation for the functional &-function
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3(f[A)) = MS(f[A®]) = lim T —1 _ exp( 2i (f{Ax) %) . (9)
X a

aso X V"‘El”a

~ lim exp(_zi_fd‘*x{f[A(x)]}?).
a

a-»o

After performing in (7) the integration over 7, and using the repre-
sentatlon (9) for 8(dir; ) let us perform the Gauss integration over
7 . We obtain as a result

<out|S|in>~ [IIDA,5(A,)8(3'A)) x (10)
7]
xeml-i [ atx L F, WF mlew(-—ra'zayA' WK, @-n K o));

where the Fourier transform KIJ ( p) of the kernel K (x —y) of the
quadratic form is

o PP,
Due to the condition d!A ;=0 and the boundary conditions (2), the
second term in the right-hand side of (11) gives the zero contribution
to (10). Taking account of this circumstance and the fact that due
to the condition A =0 (that must hold at any world point) the next
relation 9' A =0 takes place, we obtain the next final expression

<out|S|in>~ (MDA, 5(A,) 50" A, )expli rd"‘x(-%F""(x) F @y
7

In (12) in contrast with the standard relation (8) two & -functi-
ons 5(A,) and 8(91 A;) are put together under the integration sign,
which leads to the pnnclple difference of the diagram technical appear-
ing in our approach from the standard one. Really, due to (12) the
generation functional of the photon Green functions (that are free
in the limit of the sources J* - 0) would have the form

GEI]- [ DA, 5" A,)5(5" A )
u
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x exp{ifd‘x[--i—F‘w ®F,, @ + * (x) A, @], 13)

where we have introduced the vector n = (1,0,0,0) to give a covariant
form for the formula. With the help of representation (9) for the func-
tional & -fanctions 3(a* A, ) and 30" A, ) we get in a usual way* 78/

a3l - epl-L atxaty @Ay, (x93 o), (14)
where the Fourier transform of the propegator A': (x) has the form

Auy ®) =-'—"§"{gw + 2 > B }v
P - (np)® - p*n

that coincides with the propagator obtained by us earlier in v by
the method of the operator quantization. But the method of the quanti- -
zation, given in this article, is the most rigorous because it starts di-
rectly from the physical phase space. So, here a rigorous justification
of the new approach’? / to the quantization of gauge fields is given.

Our next publications would be devoted to the application of
the propagators obtained in this approach and to the generalization
of the method to the non-Abelian case.
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